
Pomona College
Department of Computer Science

Model Predictive Control in Video Game
Environments

Rona Linarez

May 09 2025

Submitted as part of the senior exercise for the degree of
Bachelor of Arts in Computer Science

Professor Anthony Clark, advisor

Copyright ©

The author grants Pomona College the nonexclusive right to make
this work available for noncommercial, educational purposes, pro-
vided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission of
the author. To disseminate otherwise or to republish requires writ-
ten permission from the author.

Abstract

Many state-of-the-art AI models rely on large volumes of
labeled training data; however, few large, labeled datasets
exist for popular video games. This paper explores the use
of Model Predictive Control (MPC) to play the retro video
game F-Zero, with the goal of generating high-quality labeled
gameplay data. Our system reframes the game as an opti-
mization problem to streamline the creation of meaningful
training data. By leveraging emulators to access low-level
game state information, this approach offers a scalable alter-
native for dataset generation. This work represents an initial
step toward developing tools and methodologies that support
video game research and applications of AI in gaming envi-
ronments.

i

ii

Acknowledgments

I would like to thank Anthony Clark for his immense support
and guidance during this project. I would also like to thank
Joseph Osborn for encouraging me to follow my passion for
computer science and video games.

iii

iv

Contents

Abstract . i
Acknowledgments . iii
List of Figures . vii
List of Tables . ix

1 Introduction 1

2 Background and Related Work 3

3 System Overview 7
3.1 Methodology . 7
3.2 System Development . 10

4 Results 13

5 Future Work 15

Bibliography 17

v

vi

List of Figures

1.1 Getting ready for a hairpin turn in F-Zero 2

2.1 An example of NEAT being used to play Super Mario World 4

3.1 A diagram of the bicycle model’s various state variables . . . 8
3.2 A RAM map for the game physics available on a F-Zero wiki 9
3.3 The Bizhawk emulator running zero while performing a RAM

search of the game’s current memory 10
3.4 A demo of the MPPI controller running in Python 11
3.5 An overview of the communication system between the game

and the controller . 12

vii

viii

List of Tables

ix

x

Chapter 1

Introduction

A significant limitation in video game research and experimentation is the
lack of high-quality labeled training data. This is largely due to the immense
volume of possible game states which individually depend on user-controlled
actions [Ha and Schmidhuber(2018)]. Hand labeling video game data is ex-
pensive and impractical, and alternatives like reinforcement learning only
provide a limited subset of game information. The current direction of arti-
ficial intelligence research demands large volumes of data, and developing AI
models capable of mastering video games remains a crucial milestone toward
achieving generalized artificial intelligence [Perez-Liebana et al.(2016)]. Clos-
ing this gap of data within video game environments is thus crucial to pro-
moting research done with games as well as providing rich data for use in
AI contexts. This thesis investigates the problem of limited data sets by
posing retro games as optimization problems. This work aims to explore
the feasibility of applying traditional control methods to solve video games
optimally, such that high quality data can be recorded without the need
for human players. The aim in this paper is to create a model that can
independently navigate around a racetrack in F-Zero, and to create labeled
training data from this model’s results.

F-Zero is a 90’s racer in which the player is tasked to complete 5 laps on
a track while avoiding enemy racers. The game features various obstacles
and complex track designs, and offers a simple control scheme which is easy
to learn but hard to master. In this work, we apply control techniques to
develop an agent capable of playing the game smoothly and effectively. The
resulting model is designed to facilitate straightforward generation of high-
quality labeled data based on its own gameplay decisions. The motivation
for this work lies in leveraging optimization-driven approaches to achieve two

1

Figure 1.1: Getting ready for a hairpin turn in F-Zero

goals: to explore methodologies for conducting research using video games,
and to advance AI techniques that depend on the structured generation
of training data. By integrating control theory and optimization into a
video game environment, my project aims to provide tools and insights
for researchers addressing challenges in retro gaming as well as a general
audience of AI researchers. The remainder of this paper will explore past
work in this field, the proposed project methodology, and specifications on
how to achieve our research goal.

2

Chapter 2

Background and Related Work

Research focused on mastering video games autonomously is relatively new,
yet the techniques employed have evolved significantly over the past decade.
Each approach offers unique strengths and limitations, which have shaped
the field’s progress. The NeuroEvolution of Augmenting Topologies (NEAT)
[da Silva Miras de Araujo and de Franca(2016)] algorithm pioneered early
efforts in video game playing. NEAT employs an evolutionary approach
that iteratively refines models by selecting the best-performing agents out
of many, evolving their approach over many generations to produce networks
optimized for specific tasks [da Silva Miras de Araujo and de Franca(2016)].
NEAT has seen applications in famous retro video games, where 2D tile-
based graphics provide enough feedback to create effective models with this
approach. While NEAT can be effective in many scenarios, this technique
struggles with generalization. NEAT often over-fits to specific environments,
even within the same iteration. This limitation severely impacts NEAT’s
ability to play video games autonomously for a long duration. The Evo-
Man competition is an example of a video game testbed designed for AI re-
searchers, and NEAT dominated as the preferred learning technique within
the pool of successful agents. However, even the best performing genetic
models struggled when facing new bosses or attack patterns in the game
[Cojocaru et al.(2020)]. Additionally, the computational demands of train-
ing NEAT are high, and performance quality requires significant training
time to produce effective results. As such, alternative models gained more
popularity and widespread use.

To address the highly nondeterministic action spaces of video games,
research shifted towards deep learning methods. Deep neural networks
(DNNs) are capable of creating more complex agents, though they require

3

Figure 2.1: An example of NEAT being used to play Super Mario World

computationally intensive training. Despite this, DNNs still share difficul-
ties with generalization, and struggle to account for environments that were
never seen before [Gupta et al.(2021)]. Some methods leverage Reinforce-
ment learning as a complementary approach to mitigate these limitations;
reinforcement learning allows an agent to learn policies adapted to dynamic
environments with learned experience. Other machine learning techniques
like variational auto-encoders (VAEs) further advanced model and state esti-
mation, demonstrating their utility in generating high-quality labeled data
[Ha and Schmidhuber(2018)]. An essential component of advancing neu-
ral network research leverages reinforcement learning to accomplish better
generalization; Ha and Schmidhuber demonstrate a recurrent world model
helps in simulating environments efficiently for policy evolution, and col-
lect labeled training data from reinforcement learning agents to train visual
encoders. Building the necessary training data in this way serves as the
inspiration for my paper.

Building on this foundation, Yunlong Lu’s work [Lu and Li(2024)] mod-
eled Mahjong, a game with a lot of randomness and incomplete information
which affect the optimal player strategy. This work quantitatively compared
the efficacy of various AI models, finding trade offs between performance and
training time. Expanding on this work, Diego et al. [Perez-Liebana et al.(2016)]
extended their analysis from traditional games to video games, highlighting
the shift from structured environments to the more complex and chaotic
state spaces characteristic of video games. Creating a generalizable agent
capable of learning how to play all types of games is an open problem in
this field, and multi-agent approaches serve as key steps towards reaching

4

this goal.
The intersection of reinforcement learning and multi-agent systems has

also gained traction, as explored in works by Jack Serrino [Serrino et al.(2019)].
These approaches emphasize interdisciplinary methods, combining evolu-
tionary algorithms, psychology, and sociology to improve agent reasoning
in scenarios with sparse rewards and cooperative challenges. Tongtong et
al.’s seminal work [Yu et al.(2024)] demonstrates a deep learning algorithm
paired with reinforcement learning to teach agents to play complex games
like StarCraft, offering a large step up in terms of game complexity (most
video game work in AI tests on games made before the 2000’s). Their model,
M2RL, learns policies in game environments with up to 16 different agents
playing simultaneously. With the goal of learning complex game objectives
when reward is sparse and the goal of various agent’s are uncertain, M2Rl
offered a step forward in building a human-like game playing agent.

The focus on my paper lies between the middle of these two achieve-
ments, focusing on a 1990’s racing game with several racers competing with
the player. Techniques such as race-line optimization [Vesel(2015)] are ap-
plied to the real-world analogue to this game in autonomous racing. Vesel’s
work optimizes racing trajectories using a simplified model of a vehicle, serv-
ing as important groundwork in the construction of my model. Autonomous
racing synthesizes many cutting edge control techniques in the aim of creat-
ing competition viable self-driving vehicles [Tătulea-Codrean et al.(2020)],
These frameworks provide key insights into achieving effective and efficient
agents. My paper builds on these foundations, aiming to integrate MPC
[Williams et al.(2016)] to create a versatile agent capable of producing mean-
ingful, labeled data of game play. The biggest challenge to bridge control
theory and video games will be fulfilling the model requirements in a simu-
lated space with limited sensing elements. Autonomous vehicles have access
to many position sensing equipment that allows for constant checks to the
vehicle’s position error to be made. Creating effective approximations for
these in our game poses a significant challenge, especially given the limited
information provided to the player during gameplay. While this limitation
does pose a tangible restriction on the accuracy of our model, we want to
show in this work that the results produced by applying control theory are
comparable to human game play.

5

6

Chapter 3

System Overview

3.1 Methodology

We implement Model Predictive Path Integral control to optimize game play
in F-Zero, modifying the application of the algorithm to fit in a video game
context. The control algorithm requires many state variables in order to
accurately predict a system’s behavior, which necessitated hardware-level
access to the video game’s memory. We conduct the development of this
model within a Super Nintendo emulator in order to retrieve this key state
information. This chapter describes the development of the agent in detail.
The methodology is divided into three key sections: model prerequisites,
emulation, and system development.

3.1.1 Model Prerequisites

To apply MPC in F-Zero, a kinematic model of our vehicle is required, along
with a state estimator. However, players do not normally have access to
vehicle data while playing; the game keeps track of key data in the console’s
RAM, such as speed, velocity and player position. We can access these values
by reading the RAM values in real time to build visual approximations
of track positions. Confirming the location of these values in RAM is a
prerequisite step towards constructing an accurate model of the game.

Bicycle Model

We will be using the bicycle model, a simplified representation of vehicle
kinematics often used for vehicle control [Soudbakhsh and Eskandarian(2012)].
This model allows us to simplify F-Zero’s movement physics, while provid-

7

Figure 3.1: A diagram of the bicycle model’s various state variables

ing the necessary movement variables required for Model Predictive Path
Integral Control. The bicycle model approximates a four-wheeled vehicle as
a two-wheeled system with a front and rear axle, which sufficiently main-
tains accuracy for most use cases. Essential parameters are preserved, such
as the position, orientation, velocity, and steering angle of the vehicle, as
well as physical characteristics like wheelbase length and maximum steering
angle; F-Zero is not a racing simulator, hence using a simplified model like
this is more than sufficient for our research goal. For our work, the bicycle
model will describe the in-game vehicle dynamics, providing a mathematical
framework for trajectory optimization and control. To construct the model,
we require information such as the vehicle’s speed, acceleration and decel-
eration, and yaw, which will be extracted or approximated from the game
environment, which are not normally accessible to the player. As such, we
need to leverage game emulation to retrieve these values.

We will be using the Bizhawk emulator to simulate the Super Nintendo
console. Bizhawk is typically used for creating tool-assisted playthroughs of
games, and provides special tools that give the user access to high levels of
control 2. Video game emulation mimics game console hardware, allowing
us to play a legitimate copy of F-Zero via software. The Bizhawk emula-
tor offers many tools that allow us to access and search through memory
while the game is running, as well as allowing us to increment the game
frame by frame (akin to stepping through a program via a debugger). To

2The Bizhawk emulator can be found at https://tasvideos.org/Bizhawk

8

extract key game state information without approximating from on-screen
visuals, we leverage Bizhawk’s built in support of scripting via Lua. The
Lua programming language is designed for embedded programming, and is
already integrated within the Bizhawk emulator to execute user-generated
code while a game is running without modifying the original game code.
This functionality allows us to observe and access valuable game data, as
well as build code on top of the game without disrupting the game’s execu-
tion.

Emulation

Figure 3.2: A RAM map for the game physics available on a F-Zero wiki

The use of an emulator is necessary to find the necessary state infor-
mation needed for our control algorithm. However, the player is provided
with minimal information during normal game play, which is not sufficient
to predict optimal movement. With Lua scripts, we gather game state infor-
mation (e.g., vehicle position, velocity, and steering angle) without needing
direct access to the game’s source code. Using Bizhawk’s RAM searching
tool, we can locate specific bytes and addresses in working RAM, and store
them as Lua variables for our model to use later. We do not need to locate
the byte-addresses for all of the values on our own: with the assistance of
user created RAM maps documenting the game’s code and variable loca-
tions in memory, we are able to retrieve all of the necessary information for
our model. These maps are essential for the completion of this research,
because we’d otherwise need to search for these values through RAM our-
selves, or generate estimates for the required values. Having the location of
variables in RAM is one of the biggest hurdles for conducting research on
retro video games, though some games do provide players with direct access
to positional and telemetry data out of the box.

9

Figure 3.3: The Bizhawk emulator running zero while performing a RAM
search of the game’s current memory

3.2 System Development

In order to satisfy the constraint of not modifying the original game code,
we separate the development of our controller from the emulator. This ap-
proach makes the application of the control method simpler by allowing us
to use any implementation of MPC that we prefer, but comes at the down-
side at requiring us to create a communication link between the client (the
game) and the the controller.

3.2.1 Control Method

MPC controller’s are designed to navigate highly nondeterministic environ-
ment by predicting future states based on current observations. [Rawlings et al.(2017)]
We use MPPI control to complete this task, due to its ability to sample
future states with a simplified model of the environment. The MPPI con-
troller, based off a paper implementation in python takes these values and
returns an optimal instruction in the form of steering angle and acceleration
1, which can be mapped onto the game via emulation tools. This control
method requires the current game state information from our Kinematics
model, as well as in-game estimations of the surrounding track in order
to properly adjust and steer the vehicle onto the pre-determined optimum
path. In order to create this path, we sample the vehicle’s position as it goes
around a track in real time. We created a sampling program in Lua which

1The GitHub repository for the MPPI controller can be found at https://github.

com/MizuhoAOKI/python_simple_mppi

10

Figure 3.4: A demo of the MPPI controller running in Python

records the X and Y values of the vehicle as it steps through every in-game
frame, and stores the results in a .csv file. This format was specified by
our controller, and allowed us easy access to the optimal line.

3.2.2 Communication between client and the controller

In order to send the recorded values from our game into the controller, and
send the optimal input decision back to the emulator, we set up a python
server to act as a bridge between the client and the controller.

The flow is as follows: The client runs the game, and records the current
state. The emulator then pauses the game execution, which effectively stops
time within the game itself, and sends these values to the server via a POST
request, A GET request is made for the next decision to make in-game,
which will be answered by the controller. The server makes a call to the
MPPI controller, which processes the data and returns an input decision.
This result answers the GET request, and is processed by the client before
repeating once again.

3.2.3 Creating Input Heuristics

When playing F-Zero normally, the player can left or right to move their
vehicle, and press the accelerator to move their vehicle forward. These val-
ues are binary and not analog, meaning to achieve precise movement and

11

Figure 3.5: An overview of the communication system between the game
and the controller

in-between states, a player must tap and release the respective buttons un-
til the desired position is acquired. Notably, the MPPI controller provides
exact steering angle and acceleration values for the client to utilize. This
provides a significant hurdle in the interaction between the client and the
controller, which must be corrected through approximations of the given
control response. Our model utilizes sharp thresholds that trigger the acti-
vation or release of buttons for acceleration. However, in order to provide
smooth and continuous turning, Pulse Width Modulation (PWM) can be
employed to simulate more precise steering angles.

Pulse Width Modulation is a technique that controls the amount of
power delivered to a device by rapidly switching the signal on and off at
a fixed frequency. The ratio of the ”on” time to the total cycle time de-
termines the output level. For example, a higher frequency cycle results in
more power or input being delivered, while a lower duty cycle reduces it. In
the context of video game control, PWM can be used to simulate analog-like
behavior on digital inputs by adjusting the duration and frequency of button
presses.

The benefit of this technique is that it we can create more accurate
translations of the model’s values in the game, allowing for smoother and
more natural movement that closely mimics human input. This is particu-
larly useful for fine-grained control tasks like steering, where binary on/off
signals are insufficient for producing realistic gameplay behavior.

12

Chapter 4

Results

We produced a model capable of playing F-Zero independently. However,
this model does not navigate the course effectively, and is prone to many
driving mistakes. One of the biggest reasons for this is the rough translation
between the game environment and the controller’s simulated environment.
This can be improved by adjusting either the model parameters or the em-
ulator’s input translation heuristics.

Fortunately, creating a data set using this model is straightforward and
fast. In a similar way that we used a sampler to acquire the positional
values of an in-game path, we are able to extract the player inputs aligned
to positional coordinates. This data can easily be saved in the .csv format,
which is satisfactory for our research goals, Despite our model being highly
game specific, the approach we use to sample inputs is flexible and can easily
be ported to other games on the same system.

While video games provide rich tests beds for data creation and collec-
tion, the question as to what the best way to harvest this data remains
highly specific to each and every game. Through this work, it’s clear that
more tools and resources are needed to streamline the process of acquiring
essential data from games. Even with this area covered, the question as to
what form the data should take is difficult to answer; positional coordinates
aligned to player inputs could serve as a good starting point, but also de-
pends on the game and the clear conditions within a certain game. Racing
games are a more straightforward in this regard, since the goal does not
move while the player makes their way towards it. More work needs to be
done to discover what format an input-aligned dataset should take to best
suit specific game genres, as well as other applications of control methods

13

to solve common video game obstacles.
An ongoing debate in the generative AI space involves the cost and re-

source heavy training needed to feed these models. Finding new and cheaper
ways to create training data is a crucial problem that requires further dis-
cussion. MPC is less resource intensive than GAI methods, due to the fact
that no prior training is required. However, MPC does require a significant
more amount of fine tuning and testing to achieve results. New research is
currently exploring the use of MPC with applied RL, which could provide
the best of both worlds in terms of efficiency and generalization.

There are many ways to get labeled video game data, and this paper
serves to offer a new method that does not require high computation power
or test subjects. We can thus efficiently and systematically generate training
data while avoiding the ethical pitfalls associated with human data collec-
tion, such as privacy violations or the exploitation of test subjects.

This approach underscores the importance of exploring alternative, low-
cost methods that align with broader efforts to reduce the environmental
and economic impact of AI research. Moreover, MPC deviates from the
current standard of applying GAI methods to solving games, and offers a
new framing for game playing not currently in use.

As video games become more integrated into AI development for broader
applications, including robotics, education, and simulation training, ensur-
ing ethical and sustainable practices in data generation will remain a critical
concern. This paper aims to contribute by demonstrating a responsible ap-
proach to solving the data vacuum affecting the creation of more problem-
solving AI agents that can beat video games. [Valevski et al.(2024)]

This paper provides a novel framework for leveraging control theory in
video games to address the need for high-quality game data sets, bridging the
gap between classical optimization techniques and modern AI approaches for
video game research.

14

Chapter 5

Future Work

The data produced by this model can be leveraged to train a variety of ma-
chine learning algorithms. The combination of position coordinates, speed,
yaw, and button inputs offers a clean and structured framework for model
development. In particular, models that benefit from structured datasets
during training, such as warm-start reinforcement learning, are well-suited
to this kind of data. Neural network-based approaches would also benefit,
especially given how easily large volumes of data can be collected using this
method.

A valuable extension of this work would be a tool that allows users to
customize which variables and button inputs are recorded in the resulting
.csv file. In the future, I aim to develop such a tool, leveraging existing
resources to streamline the setup of state representations for popular video
games. This tool would allow researchers to define which in-game variables
and control inputs are sampled and exported, enabling more targeted and
efficient data collection. By making the process of dataset generation more
accessible and customization, this tool could greatly increase the volume
and variety of datasets produced from gameplay. Such an approach would
not only accelerate experimentation in machine learning applications using
video game environments, but also contribute toward standardizing how
gameplay data is collected and formatted. This standardization is crucial
for benchmarking algorithms and enabling reproducibility across different
research projects.

This work demonstrates how emulated video game environments can
serve as rich, controllable platforms for generating training data for machine
learning. By capturing a game’s internal state and aligning it with corre-
sponding button inputs, we provide a practical bridge between simulation-

15

based learning and real-world applications. Looking forward, expanding the
tools and infrastructure for gameplay data collection will be essential for en-
abling more reproducible, scalable, and insightful research. As video games
continue to evolve as testbeds for artificial intelligence, this work represents
an early but meaningful step toward making these environments more ac-
cessible for data-driven experimentation.

16

Bibliography

[Cojocaru et al.(2020)] Gabriel-Codrin Cojocaru, Sergiu-Andrei Dinu, and
Eugen Croitoru. 2020. Increasing the Upper Bound for the EvoMan
Game Competition. In 2020 22nd International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC). 231–237.
https://doi.org/10.1109/SYNASC51798.2020.00045

[da Silva Miras de Araujo and de Franca(2016)] Karine da Silva Miras de
Araujo and Fabŕıcio Olivetti de Franca. 2016. Evolving a generalized
strategy for an action-platformer video game framework. In 2016 IEEE
Congress on Evolutionary Computation (CEC). 1303–1310. https:

//doi.org/10.1109/CEC.2016.7743938

[Gupta et al.(2021)] Dhawal Gupta, Gabor Mihucz, Matthew Schlegel,
James Kostas, Philip S. Thomas, and Martha White. 2021. Struc-
tural Credit Assignment in Neural Networks using Reinforcement
Learning. In Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 30257–
30270. https://proceedings.neurips.cc/paper_files/paper/

2021/file/fe1f9c70bdf347497e1a01b6c486bdb9-Paper.pdf

[Ha and Schmidhuber(2018)] David Ha and Jürgen Schmidhuber.
2018. Recurrent World Models Facilitate Policy Evolution. In
Advances in Neural Information Processing Systems, S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2018/

file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf

[Lu and Li(2024)] Yunlong Lu and Wenxin Li. 2024. Mahjong AI Compe-
tition: Exploring AI Application in Complex Real-World Games. In

17

Proceedings of the Thirty-Third International Joint Conference on Ar-
tificial Intelligence, IJCAI-24, Kate Larson (Ed.). International Joint
Conferences on Artificial Intelligence Organization, 8733–8736. https:

//doi.org/10.24963/ijcai.2024/1020 Demo Track.

[Perez-Liebana et al.(2016)] Diego Perez-Liebana, Spyridon Samothrakis,
Julian Togelius, Tom Schaul, and Simon Lucas. 2016. General Video
Game AI: Competition, Challenges and Opportunities. Proceedings
of the AAAI Conference on Artificial Intelligence 30, 1 (Mar. 2016).
https://doi.org/10.1609/aaai.v30i1.9869

[Rawlings et al.(2017)] J.B. Rawlings, D.Q. Mayne, and M. Diehl. 2017.
Model Predictive Control: Theory, Computation, and Design. Nob Hill
Publishing. https://books.google.com/books?id=MrJctAEACAAJ

[Serrino et al.(2019)] Jack Serrino, Max Kleiman-Weiner, David C Parkes,
and Josh Tenenbaum. 2019. Finding Friend and Foe in Multi-
Agent Games. In Advances in Neural Information Processing Sys-
tems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
and E. Foxand R. Garnett (Eds.), Vol. 32. Curran Associates,
Inc. https://proceedings.neurips.cc/paper_files/paper/2019/

file/912d2b1c7b2826caf99687388d2e8f7c-Paper.pdf

[Soudbakhsh and Eskandarian(2012)] Damoon Soudbakhsh and Azim
Eskandarian. 2012. Vehicle Lateral and Steering Control.
Springer London, London, 209–232. https://doi.org/10.1007/

978-0-85729-085-4_10

[Tătulea-Codrean et al.(2020)] Alexandra Tătulea-Codrean, Tom-
maso Mariani, and Sebastian Engell. 2020. Design and Sim-
ulation of a Machine-learning and Model Predictive Con-
trol Approach to Autonomous Race Driving for the F1/10
Platform. IFAC-PapersOnLine 53, 2 (2020), 6031–6036.
https://doi.org/10.1016/j.ifacol.2020.12.1669 21st IFAC
World Congress.

[Valevski et al.(2024)] Dani Valevski, Yaniv Leviathan, Moab Arar, and
Shlomi Fruchter. 2024. Diffusion Models Are Real-Time Game Engines.
arXiv:2408.14837 [cs.LG] https://arxiv.org/abs/2408.14837

[Vesel(2015)] Ricky Vesel. 2015. Racing line optimization @ race optimal.
SIGEVOlution 7, 2–3 (Aug. 2015), 12–20. https://doi.org/10.

1145/2815474.2815476

18

[Williams et al.(2016)] Grady Williams, Paul Drews, Brian Goldfain,
James M. Rehg, and Evangelos A. Theodorou. 2016. Aggressive driv-
ing with model predictive path integral control. In 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA). 1433–1440.
https://doi.org/10.1109/ICRA.2016.7487277

[Yu et al.(2024)] Tongtong Yu, Chenghua He, and Qiyue Yin. 2024. M2RL:
A Multi-player Multi-agent Reinforcement Learning Framework for
Complex Games. In Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, IJCAI-24, Kate Larson (Ed.). In-
ternational Joint Conferences on Artificial Intelligence Organization,
8847–8850. https://doi.org/10.24963/ijcai.2024/1046 Demo
Track.

19

